BIRTH LOCATIONS OF THEKEPLERCIRCUMBINARY PLANETS
نویسندگان
چکیده
منابع مشابه
Birth and fate of hot - Neptune planets
This paper presents a consistent description of the formation and the subsequent evolution of gaseous planets, with special attention to short-period, low-mass hot-Neptune planets characteristic of µ Ara-like systems. We show that core accretion including migration and disk evolution and subsequent evolution taking into account irradiation and evaporation provide a viable formation mechanism fo...
متن کاملGaseous Planets, Protostars, and Young Brown Dwarfs: Birth and Fate
We review recent theoretical progress aimed at understanding the formation and the early stages of evolution of giant planets, low-mass stars, and brown dwarfs. Calculations coupling giant planet formation, within a modern version of the core accretion model that includes planet migration and disk evolution, and subsequent evolution yield consistent determinations of the planet structure and ev...
متن کاملA New Family of Planets? “ocean-planets”
A new family of planets is considered which is in between the rocky terrestrial planets and the gaseous giants, “Ocean-Planets”. We present the possible formation, composition and internal structure of these putative planets. We consider their oceans, as well as their possible exobiology interest. These exoplanets should be detectable by Space missions such as Eddington, Kepler, and possibly CO...
متن کاملDynamical Evolution of Planets in Disks Planets in Resonant Orbits
We study the evolution of a system consisting of two protoplanets still embedded in a protoplanetary disk. Results of two different numerical approaches are presented. In the first kind of model the motion of the disk material is followed by fully viscous hydrodynamical simulations, and the planetary motion is determined by N-body calculations including exactly the gravitational potential from ...
متن کاملOrbital Evolution and Migration of Giant Planets: Modeling Extrasolar Planets
Giant planets in circumstellar disks can migrate inward from their initial (formation) positions. Radial migration is caused by inward torques between the planet and the disk; by outward torques between the planet and the spinning star; and by outward torques due to Roche lobe overflow and consequent mass loss from the planet. We present self-consistent numerical considerations of the problem o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2015
ISSN: 1538-4357
DOI: 10.1088/0004-637x/808/1/58